
i

PARALLEL OCEAN MODELING USING
GLENDA

Building 1 103
Stennis Space Center
Mississippi 39529

Phone 601-688-5737
FAX 601-688-7072

Jerrf L. Biekhiitn, l§

: / ■ '■'■ ■.

:

■

19950530 027

n\ ■•...: ^. — '< -•** - "*%

\]| 111 The University of
>II III Southern Mississippi

TR-4/95

Approved for public release; distribution is unlimited. May 1995

The Center for Ocean & Atmospheric Modeling (COAM) is operated by The University of
Southern Mississippi under sponsorship of the Department of the Navy, Office o the
Chief of Naval Research. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily reflect the
position or the policy of the U.S. Government, and no official endorsement should be
inferred.

.„, ;—■

£crC R!j!"iC£a I:"03? 'r—k
■""■■•—--

v; r.««Ä?-I & A
W) r. 'v-.:1?*. a ■■ i
tta? WlVYlV'-rd. a ' s

\ ,7-.,v ":, It J, C c. t X 5Sl.™.i< ̂ ^%=wr*Kx?'S!n*eis>>S'-

i
cU"02rT^—■'■L,*2r-*™*llWrAHJJ^-' i

■es.-..

s
! -:i 3 -

vM-'V-u?.^/;-- o^»«.,^™.—«mn-aüHM«™*-'

University of Southern Mississippi

PARALLEL OCEAN MODELING USING GLENDA

by

Jerry Lynn Bickham, II

A Thesis
Submitted to the Graduate School

of the University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Approved:

nijt&jm ILM

o <x~-,<^ \ ^> JM_>C*

f'L n
Dean of the Graduate School

May 1995

TABLE OF CONTENTS

Table of Contents i

List of Tables Hi

List of Figures iv

1 Introduction 1

2 Glenda 1

2.1 PVM - Parallel Virtual Machine 1

2.2 Linda and Its Use of Tuple Space 2

2.3 Glenda Operations 3

3 The Shallow Water Equation Model (SWEM) 4

3.1 Barotropic and Reduced Gravity Ocean Models 5

3.2 Model Equations for SWEM 6

3.3 Numerical Schemes for SWEM 8

4 The Parallelization Process 10

4.1 Parallelization Strategy for SWEM 11

4.2 Determining Array Dependencies 12

4.3 Data Propagation in SWEM 13

4.3.1 Dividing the data 13

4.3.2 Propagation from master to worker 15

4.3.3 Propagation between workers 16

4.3.4 Overlap definitions 17

4.4 Problems Encountered 22

4.5 Debugging Methods Used 23

5 Testing the Parallel Version of SWEM 24

6 Conclusion and Future Research 25

A The SWEM Experimental Region 28

B Parallel Version of SWEM 30

LIST OF TABLES

1 Amount of data (in bytes) being processed per worker 15

2 Timings for a 240-day simulation 24

LIST OF FIGURES

1 The Arakawa C-grid ' ^

2 Three choices for dividing the data ' ^

3 Division of data with 97 rows among three workers 1 '

91 4 Propagation of data between workers £-x

5 The annual mean sea surface displacement from the SWEM simulations 29

IV

1 Introduction

In this document we describe how, with the use of Glenda, we were able to parallelize the

ocean modeling program SWEM. After a description of Glenda and an introduction to the

ocean model, we discuss how we parallelized the model. We first had to determine the

array dependencies in the program in order to better understand the way we were going

to handle data propagation. Once we had a grasp of how the data was to be propagated,

there was a need to develop overlap definitions to help improve the readability of the code.

But, of course, we still encountered problems that had to be solved. Therefore, we had

to use a wide assortment of debugging techniques to overcome these problems. With

our problems finally solved and the program now complete, we tested our new version of

SWEM and gathered results.

2 Glenda

Glenda was developed in 1993 by Benjamin R. Seyfarth and graduate students (myself

included) from The University of Southern Mississippi [11]. It was developed to provide

both the basic capabilities of Linda1 (a group of functions which simplify writing parallel

programs) and the portability of PVM (Parallel Virtual Machine). The Glenda model was

set up to closely parallel that of Linda - with a few exceptions. Glenda is built utilizing the

PVM software system to provide the underlying communications [2]. PVM is a collection of

functions that, like Linda, allow the user to make use of a multiprocessor system. Glenda

supports most of the Linda operations with a few added capabilities to utilize PVM more

fully [12].

2.1 PVM - Parallel Virtual Machine

PVM (Parallel Virtual Machine) is a software system that enables a collection of het-

erogeneous computers to be used as a coherent and flexible concurrent computational

1 Linda is a registered trademark of Scientific Computing Associates.

resource. The individual computers may be shared- or local-memory multiprocessors,

vector supercomputers, specialized graphics engines, or scalar workstations, that may

be interconnected by a variety of networks, such as ethernet, FDDI, etc. PVM support

software executes on each machine in a user-configurable pool and presents a unified,

general, and powerful computational environment of concurrent applications. User pro-

grams written in C or Fortran are provided access to PVM through the use of calls to

PVM library routines for functions such as process initiation, message transmission and

reception, and synchronization via barriers or rendezvous. Users may optionally control

the execution location of specific application components. The PVM system transpar-

ently handles message routing, data conversion for incompatible architectures, and other

tasks that are necessary for operation in a heterogeneous, network environment [6].

2.2 Linda and Its Use of Tuple Space

Linda programs communicate by inserting and retrieving tuples, or collections of data

items referenced by a name, into a shared memory area referred to as "tuple space" [1]

Therefore, before any further discussion of Glenda can proceed, the idea behind "tuple

space" should be described. 'Tuple space" is memory in one or more computers whose

purpose is to serve as a temporary storage facility for data being transferred between

processes. The data being transferred is grouped into collections called "tuples". Each

tuple consists of a string, which serves as the tuple's identifier, and zero or more data

items. The data can be scalar variables, array variables, or real numbers:

• ("Data", i,sum, A: 10,5)

Here, the tuple's name is "Data". It consists of four data items. The variables i and

sum are scalars. The variable A is an array of size 10. The final data item is the

integer 5. When a process is ready to send a tuple to another process, the process to

which it will send the tuple may not necessarily be ready to receive it. Thus, to prevent

the sending process from having to wait, the tuple is temporarily stored in "tuple space"

until the receiving process is ready to receive it [3][4].

2.3 Glenda Operations

Glenda is made up of five of the six Linda operations, as well as five other functions unique

to Glenda[11]. Here are the Glenda functions.

• tid = gLmytidO

• tid = gLspawn (name, [hostname])

We join Glenda by calling gLmytid and use gLspawn to start subprocesses. gLmytid

returns a PVM task id number and enrolls it into PVM. gLspawn returns a PVM task

id number for the spawned process.

• gLout (name,...)

• gLin (name,...)

• gLinp (name,...)

• gLrd (name,...)

• gLrdp (name,...)

These are the five primary Glenda functions. Every tuple has a character string for

its first component, followed by zero or more data items (represented above by...).

gLout outputs a tuple into tuple space for other processes to retrieve using gLin or

gLrd. gLinp and gLrdp are predicate versions of gLin and gl_rd and only retrieve a

tuple if a tuple is available.

• gl.outto (tid, name,...)

• günto (name,...)

The functions outto and into were added to make use of PVM's multicast capability,

gl.outto can be used along with a PVM task identifier to send a tuple directly to a

task, gl.into must then be used to retrieve a tuple sent using gLoutto.

• gi-exit ()

To exit out of PVM and the Glenda tuple server, the function gl.exit must be used

[12].

3 The Shallow Water Equation Model (SWEM)

SWEM is an acronym for Shallow Water Equation Model. It was developed by Katherine

S. Hedstrom of Rutgers University. The SWEM code is derived from the external mode

equations for the solution of the vertically-integrated flow which are part of the 3-D free

surface models currently being developed by Prof. D. Haidvogel and his colleagues at

Rutgers University. The principal attributes of SWEM are

• finite differencing

• Arakawa C-grid

• generalized boundary-fitted orthogonal coordinates

• option for masking out land areas

The generalized orthogonal coordinates were introduced to avoid the numerical inaccu-

racies of approximating the coastlines by a step-like function. In basin-wide applications,

the complexity of the domain geometry makes it virtually impossible to adopt boundary

fitted grids. However, curvilinear coordinates give the opportunity to concentrate fine spa-

tial resolution in areas of higher interest and minimize the number of masked land points,

indeed, reducing the computational cost of using Cartesian coordinates over the whole

domain at the required fine resolution[10].

In general, ocean models describe the response of a variable density ocean to atmo-

spheric momentum and heat forcing. This response can very simply be represented in

terms of eigenmodes of a linearized system of equations. The zeroth mode is equivalent

to the vertically-averaged component of the motion, known as the barotropic mode.

The higher modes are called baroclinic modes and are associated with the higher

order components of the vertical density profile [5].

Ocean models usually make the hydrostatic approximation in which the pressure dif-

ference between two points on the same vertical line depends only on the weight as if the

fluid were at rest. Under these assumptions, at any point the pressure forces depend on

the thickness of the water column above that point, as well as on the vertical variations of

the water density. Barotropic models neglect the 3-D structure of the density distribution

and assume that the ocean is a homogeneous fluid. So, this relation holds if the horizon-

tal dimensions of the ocean volume under consideration are much larger than the vertical

dimensions, hence the shallow water designation [9].

3.1 Barotropic and Reduced Gravity Ocean Models

Barotropic models are interesting and important for several reasons. First of all, the free

surface elevation couples directly to the barotropic mode. One of the important data fields

used as part of the initialization and updating procedures for real-time ocean prediction

are satellite altimeter measurements2 of the free surface elevation. Thus, information

from altimeters may first enter the ocean model through the barotropic mode.

The presence of free surface gravity waves represents a second important feature

of barotropic models. Gravity waves are fast surface waves that propagate at a speed

c = \/gH, where g is the gravitational acceleration, and H is the depth of the ocean

[9]. The simple explicit finite-difference schemes treating such waves are subject to se-

vere time step limitations so that solution of the barotropic mode may lead to large CPU

requirements. Therefore, it is important to study the solution of this system with efficient

numerical schemes, before incorporating it into the general 3-D ocean models.

The pressure gradients associated with the free surface elevation are constant with

depth. Thus, they form part of the zeroth mode or the vertically-averaged mode, and

2 A radar altimeter measures the distance from the satellite to the surface of the ocean,
and if the position of the satellite in space is known, this measurement allows the ocean
surface deviations from the level corresponding to no motion to be inferred on time scales
of a few days to years.

appear only in the barotropic mode equations. Consequently, the baroclinic system rep-

resenting the higher-order modes has no surface elevation associated with it, and the

corresponding surface boundary condition is that of a rigid lid.

A particular form of the baroclinic models are the so-called reduced gravity mod-

els [5]. These traditionally assume a dynamically active upper layer of density p\ which

overlays a motionless, infinitely deep layer of density /?2- The corresponding mathe-

matical equations are formally equivalent to the barotropic models with the gravitational

acceleration g substituted by g' = ff ~ . and the ocean depth, H, by the thickness

of the upper layer, h. The reduced gravity acceleration, g', has a typical value of 2/3

cms-2. Similarly, the fastest waves contained in the reduced gravity models travels at a

speed c = y/ffi, or about ten to one hundred times slower than the barotropic gravity

waves[9].

So, as we form the model equations associated with SWEM, we will refer to barotropic

model equations with the knowledge that these simple substitutions will result in the re-

duced gravity model formulations used in our simulation.

3.2 Model Equations for SWEM

The model equations for the barotropic component of a hydrostatic ocean are derived

from the Navier-Stokes equations for incompressible flow on a rotating Earth. Here, they

are presented in Cartesian coordinates with constant friction coefficients to simplify the

arithmetical text.

^ . +fV-gH (^y^-r^A^U-^UU/m-^iUV/H),

drj
~dt

<dU_ dV'
KOX dyt

(2)

(3)

where

u = (U,V)

V
—*
'W = - Ivwlxi Vw

n = [(n)x, (n)y

/ = 2Q.sin(j)

H(x,y)

9
V2

A

-mass transports in the x- and ^/-directions, respectively

-free surface elevation

-wind stress components

-bottom stress components

-Coriolis parameter for latitude (/); Q is the

angular rotation rate of the Earth 7 X10 s

-topography (bottom depth)

-acceleration due to gravity

-Laplacian operator in horizontal coordinates x,y

-coefficient of lateral friction
Now we must choose our boundary conditions. The main criterion is whether a bound-

ary is closed (like at a shore) or open (like at a strait where waves and currents can en-

ter and exit the model region). At rigid walls (a coast, the ocean bottom, etc.) no flux

of momentum is prescribed. That is, the cross boundary velocity is set to zero. An-

other condition that is often applied is setting the tangential velocity to zero at the lateral

coastal boundary. The vanishing of the tangential velocity implies the existence of fric-

tional boundary layers, because the velocity is brought to zero from the free stream value

across a thin boundary layer; and in this layer, friction is important. At the ocean bottom,

the effects of friction are represented by the bottom stress, Tj,. SWEM applies a linear

drag coefficient, such that nx = CdU and ny = CdV. At the sea surface, the wind

stress represents the input of energy from the atmosphere [5].

Of course, having a closed boundary is not our only option. However, boundary con-

ditions at open boundaries (such as a strait or a gulf) are more difficult to assign. In

general, it is necessary to specify, either from observations and/or estimates, features

that enter the domain and allow features to exit without generating disturbances inside

the modeled region [9].

3.3 Numerical Schemes for SWEM

The system of equations (1)-(3) has both parabolic and hyperbolic properties, the former

associated with the diffusion terms and the latter with the pressure gradients and nonlinear

terms. Diffusion of momentum will lead to a parabolic partial differential equation. The

coupling of the time derivatives to the pressure gradients will lead to a system that has

hyperbolic characteristics.

The numerical schemes for solving time-dependent partial differential equations fall

generally into two classes: explicit or implicit. The term "explicit" denotes a scheme where

all terms on the right hand side (r.h.s.) of system (1)-(3) are evaluated at time steps n,

n -1, etc. So, at any time tn+l the r.h.s.is known from previous steps. "Implicit", on the

other hand, denotes a scheme where some of the terms on the r.h.s. are evaluated at

time step tn+1 and, thus, we must transfer these terms to the left hand side (l.h.s.) of

the equations and invert the corresponding coefficient matrix of the unknown variables at

tn+l.
Even with the recent advances in the numerical solution of partial differential equa-

tions using the implicit treatment, the different nature of new computer architectures and

the increasing size of computer memories are leading to renewed consideration of the

explicit treatment of the barotropic mode. As the number of vertical levels or layers in-

creases, the fraction of computer time spent in solving the 2-D barotropic equations per

level tends to decrease. Also, most explicit techniques are usually fully vectorizable and

"parallelizable", giving strong competition to the implicit techniques on computers of this

and the next decade [5]. Therefore, since SWEM uses explicit numerical schemes to

solve the system (1)-(3), we will now concentrate on explicit time integration.

The finite difference analog of equations (1)-(3) follows from the finite difference ex-

pressions for the first and second spatial derivatives in the X- and ^/-directions. Denoting

f(x, y) = f(i dx, j dy) = fij, we have

dU TT TT ,
— = (Ui+l)j - Ui-ij)/2AX, (4)

dV T; jr I — = {Vij+i ~ Vij-i)/2Ay, (5)

d2U
— = (^+ij + Ui-ij - 2Uitj)/AX2, (6)

— = (Vij+i + ^j_i - 2ViJ)/Ay2. (7)

In order to obey the stability conditions of the finite difference scheme, the terms of equa-

tions 4-5 are computed at t = n, and 6-7 are computed at t = n — 1. Similarly,

the pressure and Coriolis terms are computed at t = n, while the bottom stress, 7&, is

computed at t = n — 1 [7].

By locating the variables on a staggered mesh called the C-grid, the pressure p and

height h variables are located at the center of the mesh boxes, and the mass transports

U and V at the center of the box boundaries facing the x and y directions, respectively.

The Arakawa C-grid (shown in figure 1) [7] is the grid model being used. The thick

outer line shows the position of the model boundary. The points inside the boundary are

those which are advanced in time using the model physics. The points on the boundary

and those on the outside must be supplied by the boundary conditions.

The two-dimensional model fields are carried in three-dimensional arrays where the

third array index refers to the two time levels (old and new). The integers i and j are

used throughout the model to index the two spatial dimensions:

• i Index variable for the £ direction.

• j Index variable for the 7] direction.

The range of £ is 1 to L and the range of rj is 1 to M [7].

r|

M o

M D
Mm O :: O

Mm D

O *

2
2

1

1

D

O t

D

O

D

O

■B-

-B-

O

-B-

O

-B-

O

-B-

O

-B-

O x O

-B- -B-

O

-B-

O

-B-

O

-B-

O

-B-

O

-B-

O

■fi-

o

-B-

O

-B-

O

-B-

-B-

O

-B-

O

■B-

O

-B-

O

-B-

O x O

O x O

-B-

O

-B-

O

■B-

■B-

O

-B-

O t

-B-

O 3

-B-

O X

■e-

j=0 OxOxOxOxOxOxOx
i = 01 12233 "•• LmLmL

x - u points
D - v points
o - r| points

D

O

D

O

D

O

D

O

D

O

L

Figure 1: The Arakawa C-grid.

4 The Parallelization Process

The process of parallelizing the SWEM code consisted of many steps. First was determin-

ing the dependencies between adjacent array cells within the primary arrays. Next, we

had to determine both how and where the data was to be propagated between workers.

We then had to derive overlap definitions to define the amount of data to be shared be-

tween workers. Once initial coding was completed, many unforeseen problems resulted

in which a variety of debugging methods were devised to aid in solving them. Lastly, when

10

all of the coding was completed, we tested our parallel model for speedup.

4.1 Parallelization Strategy for SWEM

The SWEM code is comprised of three major parts. The first part is the initialization

phase where all of the primary variables are given starting values. Part two consists of

three nested loops which do the actual calculations. The final part is the output phase

where all necessary data is recorded.

Our first objective was to determine which of these parts lent themselves to be paral-

lelized. Since the first and last parts made up only a small percentage of the computation

time, they were left essentially unchanged. The bulk of the code's work was being done

by the three loops, and it was this portion of the code that was to be parallelized.

The primary data consists of three 3-dimensional arrays - ubar, vbar, and zeta

- along with a multitude of scalars and 2-dimensional arrays used for intermediate calcu-

lations. The 3-dimensional arrays were of size RowJength * ColumnJength * 2, with the

2 in the third dimension representing the old and the new values for the two dimensional

components. For example, ubar(i,j,kold) represents the old value for the two dimen-

sional ubar(ij), while ubar(i,j,knew) represents the new value. As computations with

these arrays proceed, the data for knew is usually overwritten with the data from the

previous time step {tn~l), and the values of kold and knew are switched.

The parallel model we incorporated into SWEM was the master-worker scheme,

where each worker would do exactly the same calculations, but on a different portion

of the data [4]. This scheme not only seemed to be best suited for SWEM's structure of

calculation, but also was well suited for SWEM's structure of data. The data - primarily

two and three dimensional arrays - could be divided among all of the workers, and it was

this division that determined how much calculation time would be spent by each worker.

Each worker would basically receive its data from the master program, execute the three

nested loops, and return its results back to the master program.

11

4.2 Determining Array Dependencies

Many of SWEM's calculations consist of averages or differences among array cells which

are nearest neighbors. Some even depended on next nearest neighbors. From this, it

was evident that each worker would have to share data with an adjoining worker. There-

fore, we had to determine how much data was to be shared between the workers to ensure

correct calculations. One possible method of doing this would be to painstakingly read

every line of code to determine which arrays depended on which other arrays. Seeing

that there were on the order of fifty arrays to check, doing this by hand was out of the

question.
To help speed things along, we wrote a simple array dependency program which

scanned a program and determined each array's dependency on other arrays. Before

using this array dependency program, we first had to insert into each subroutine blocks of

commented lines consisting of an array name, its indices, and any arrays that it depended

on in a single calculation. Using this program we rapidly determined that dependencies

spanning two rows and columns existed for the three main arrays based on inputs and

outputs of complete subroutines. For example, in this calculation

tmp2(i,j) = mDon_r(i,j,krhs) *
(ubar(i+l,j,krhs) - ubar(i,j,krhs))

the array tmp2 depends on two arrays - mDon_r and ubar. However, calcu-

lation of an array cell of tmp2 depends on mDon_r and two elements of ubar.

This represents a neighbor dependency along each row of ubar. Also, we do not know

exactly which arrays these two depend on. To determine this, we would place these com-

ments below this statement.

c

cdep tmp2(i,j) ~mDon_r (0,0,0) ubar(0:1,0,0)

c
The 'dep' tells the array dependency program that this comment line is to be pro-

cessed. Next is the array to be checked along with its dimensions. The '~* represents

12

'depends on' and was used to help the programmer distinguish the line from the original

assignment statement. Following the '~' symbol are the arrays that tmp2 depends

on in the calculation. Inside the parentheses, the numbers represent the neighbor de-

pendencies within an array. Essentially, a descriptor of the form

- number_of_left_neighbors : number.of_right_neighbors

is used for each dimension, unless there are no neighbor dependencies at all, in which

case a '0' is used. For example, (0,0,0) represents no neighbor dependencies in three

dimensions. (0:1,0,0) represents a right neighbor dependency in each row, and no neigh-

bor dependencies in the other two dimensions. (0,-1:1,0) represents a top and bottom

dependency in each column, and no neighbor dependencies in the other two dimensions.

When the dependency program is run on our example, the following output is produced:

c
cdep tmp2(i,j) ~mDon_r(0,0,0) ubar(0:1,0,0)
c tmp2(i,j) ~
c mDon_r(i,j,k)
c ubar(i:i+l, j ,k)
c

4.3 Data Propagation in SWEM

After examining all of the subroutines called within the three nested loops with the array

dependency program, we determined that the largest neighbor dependency was a two

neighbor dependency in both the first and second dimensions. We then had to decide

which method of dividing the data we would use, how we would propagate data from the

master to the workers, and how we would propagate data between workers.

4.3.1 Dividing the data

We essentially had three choices of how we could divide the data, as shown in Figure

2: 1) divide the data by rows, 2) divide the data by columns, or 3) divide the data by

13

!«3Ü
II:

■«

It

'!
I«
I«

Division by rows Division by columns Division by rows and columns

Figure 2: Three choices for dividing the data.

both rows and columns. Dividing the data by rows and dividing the data by columns are

essentially the same. The only difference is the way you visualize the data.

However, since the program was written in FORTRAN, which uses column major ar-

ray indexing, we decided that division by rows would make for more efficient data trans-

mission between workers. It would also make for easier coding of the data transmission

subroutines to be written using Glenda. With division by columns, the data being sent

would not be contiguous and would require multiple sends to transport the data from one

process to another. On the other hand, with division by rows, the data could be sent in

contiguous blocks which would require only one sending call.

We also considered dividing the data by both rows and columns, but this too had its

problems. First of all, more divisions meant that more sending calls would be needed to

send all of the data. This would increase communication times and decrease efficiency.

But most importantly, even though division by both rows and columns gives us less total

data to have to work with, the difference between this method and division by rows can

be negligible. To illustrate this, consider an n X n array of double precision, floating

point numbers divided between p2 workers. With division by rows only, we have for the

amount of data in bytes

AmtjofJData = n * [n + 4 * (p - 1)] * 8 (8)

14

Number of Workers 4 16 64

Division by Rows 89600 128000 281600

Division by Rows

and Columns

86528 100352 131072

Table 1: Amount of data (in bytes) being processed per worker.

With division by rows and columns, we have

Amt.ofData = [n + 4 * (p - 1)]2 * 8 0)

Suppose the array we are working with is 100 X 100, and we divide it between four

workers. With division by rows only we have 89600 bytes. With division by rows and

columns we have 86528 bytes. Thus, there is only about a three percent difference in the

amount of data being worked on by all of the workers. Table 1 shows how the amount

of data being processed (in bytes) varies as we increase the level of parallelization. As

seen in the table, as the number of CPUs increases, the difference between division by

rows and division by rows and columns increases significantly. Therefore, if we run the

simulation with more processors, it would be advisable to divide the data by both rows

and columns for increased efficiency.

4.3.2 Propagation from master to worker

Each worker is responsible for computing results for a range of rows of the major arrays.

After reading the input data, the master program uses the gl_outt O operation to send

the appropriate sections of these arrays to each worker [11]. At this point the master and

the workers simultaneously complete the initialization process by computing scalars and

arrays derived directly from the input data.

Once we decided on dividing the data by rows, we could now begin to write the code

for the propagation of data between processes. Transfer of data between the master

process and its worker processes was trivial. We simply divided the data into blocks and

15

sent each block to the appropriate worker using a subroutine written in C using Glenda

to transfer the data between processes. Each worker will be responsible for a particular

block of data in each array. To send the data arrays from the master to the workers, the

call

gl_outto(worker_tids[i],"3D_arrays",
ubar + ubar_offset : ubar_size,
vbar + vbar_offset : vbar_size,
zeta + zeta_offset : zeta.size);

was used. The array "worker_tids[z]" contains the task id number for the i'th worker pro-

cess. The string "3D.arrays" is the name of the data tuple being sent. Each array being

sent is represented by

• array name + array offset for worker i: block size for worker i

To receive the data arrays that were sent from the master to the workers, the call

gl_into(n3D_arrays",
? ubar :len,? vbar :len,? zeta :len);

will be used. Again, the string "3D_arrays" is the name of the data tuple being received.

The"?" tells Glenda to place the corresponding data item in the matching tuple into the

variable following the"?". If a data item being sent to gl_int o is an array, then a variable

is used to receive the size of the array being sent. Here, the sizes of the arrays was not

needed, so the sizes were received in a dummy variable len. If some of the data being

sent were scalars, then the size and offset would not be needed in the gl_Olltto call,

thus removing the need for a size variable in the gl_into call.

4.3.3 Propagation between workers

The SWEM workers were each assigned a range of rows to compute new values within

the inner loops. In an example with 97 rows and three workers we divided the data as

illustrated in Figure 3.

16

63
64
65
66

97

Worker #1

'^J^^S^SSm } Over.apdata
} Overlap data

Worker #2

33 &Mwi
1 W
3LT7T

} Overlap data

} Overlap data

35

Worker #3

Figure 3: Division of data with 97 rows among three workers.

Worker 1 computes new data for rows 1 through 35, worker 2 computes new data

for rows 36 through 64, while worker 3 computes new data for rows 65 through 97. The

calculations for worker 1 require data for 2 additional rows: 36 and 37. Also the calcula-

tions for worker 2 require data for rows 34 and 35. After computing new data for rows 36

and 37, worker 2 needs to send this data to worker 1 to prepare it for the next iteration.

At the same time worker 1 needs to send its new values for rows 34 and 35 to worker 2

to prepare it for the next iteration. A similar process occurs between workers 2 and 3.

4.3.4 Overlap definitions

During the process of writing the code for the propagation routines, it soon became evident

that there was a need for some easy way to allow myself to write "readable" code. Each

time there was a call to gLoutto or gLinto, the size of the overlap regions were

needed for each array. Also needed was the offset required to get to the last two rows of

data in each array (the overlap with the next worker). And finally, in order to know how

many rows of overlap to send to an adjacent worker, you also needed to know whether

17

the array's row indices began with 1 or 0.

To solve this problem, we developed fixed equations that defined exactly which data

region was to be sent to adjoining workers. These equations would define the offset and

size for each boundary region to be propagated. They are as follows:

worker_0 = (worker == 0) ? 2 : 0
if worker < (num_workers - 1)

offset =(num_rows - worker_0) * array_width
size =((array_start == 2) ? 1:2)*array_width

if worker > 0
offset =(3 - array_start) * array.width

size =(2 - array.adj) * array.width

Here, worker_0 is defined to be equal to 2 if the worker in question is the worker

designated as the first worker (worker 0). Otherwise, its equal to 0. This variable is used

to determine how many rows from the end of the array the overlap block begins. If the

worker in question is not the last worker, then it must send its last two (or one) rows that it

is responsible for calculating to the next worker. In this case, offset and size are as

follows: offset defines where in the array the overlap block begins. num_rows

defines how many rows of the array the worker is working with, array_width de-

fines the number of columns in the array, size defines how many array elements are in

the overlap block, array_start is the starting row index for the array. If it is equal to

2, the size of the overlap block is only 1 * array .width. If it is equal to 0 or 1,

the overlap block is equal to 2 * array_width.

If the worker in question is not the first worker, it must send its first two rows that

it is responsible for calculating to the previous worker. The offset skips past the first

two (or three) rows of overlap data to get to the correct block. The size is determined

by array_adj and, of course, the array_width. If the array in question has a

beginning row index of 2, it has an array adjustment - array_adj - of 1. If it has a

beginning row index of 0 or 1, then array_adj is equal to 0. Thus, the size will be

equal to 2 * array _width, unless the array has a beginning row index of 2.

18

Here is the code required to send the propagated data from one worker to another.

worker_0 = (*worker ==0) ? 2 : 0;
if(*worker < (*imm_workers - 1))

{
zeta_offset =(*imm_rows - worker_0)* zeta.width;
zeta_size =((zeta_start == 2) ? 1 : 2)* zeta.width;
ubar.offset =(*num_rows - worker_0) * ubar.width;
ubar.size =((ubar_start == 2) ? 1 : 2)* ubar.width;
vbar_offset =(*num_rows - worker.O) * vbar.width;
vbar_size =((vbar_start == 2) ? 1 : 2)* vbar.width

gl.outto(worker_tids[*worker+l],"bound_bottom",
zeta+zeta_offset : zeta_size,
ubar+ubar_offset : ubar.size,
vbar+vbar_offset : vbar_size);

}

if(*worker > 0)

■C
zeta_offset =(3 - zeta.start)* zeta.width;
zeta_size =(2 - zeta.adj)* zeta_width;
ubar_offset =(3 - iibar_start)* ubar.width;
ubar.size =(2 - ubar.adj)* ubar.width;
vbar.offset =(3 - vbar.start)* vbar.width;
vbar_size =(2 - vbar.adj)* vbar.width;

gl_outto(worker_tids[*worker - 1],"bound_top",
zeta+zeta.offset : zeta.size,
ubar+ubar.offset : ubar.size,

19

vbar+vbar_offset : vbar.size);

}

Notice that for some workers, both if conditions will be true. These workers are respon-

sible for interior blocks which have overlapping regions at both the beginning of the array

and the end of the array.

In order to receive these blocks of data, each worker must also have similar defini-

tions for the offsets so that the blocks of data are placed in the correct locations within

the array. They are as follows:

worker_0 =(worker == 0)? num.rows + 1 :imm_rows + 3;

if worker < (rmm_workers - 1)
offset =(worker_0 - array_start)* array_width

if worker > 0
offset = 0

Here, worker _0 defines how many rows to skip in order to locate the correct location

within an array to place the received block. If the array in question has its row index begin

with array_start and the worker in question is not the last worker, then that value

is subtracted from worker_0 to get the correct offset for that particular array. If the

worker in question is not the first worker, then the offset is 0 for all arrays. An example of

the code designed to receive the blocks is as follows:

worker_0 =(*worker == 0)? *num_rows + 1 :*num_rows + 3
if(*worker < (*num_workers - 1))

{
zeta_offset = (worker.O - zeta_start) * zeta.width;
ubar_offset = (worker_0 - ubar.start) * ubar.width;
vbar_offset = (worker.O - vbar.start) * vbar_width
gl_into("bound_top",

? zeta+zeta_offset : zeta.size,

20

34
35
36
37

35

Worker tj I

Worker S3

< 2

i I

i 30
t 31
/ 32
v 33

Woricer#2i

Figure 4: Propagation of data between workers.

? ubar+ubar_offset
? vbar+vbaroffset

ubar_size,
vbar_size);

if(*worker > 0)

{
zeta_offset = 0:
ubar_offset = 0:
vbar_offset = 0:
gl_into("bound_bottom",

? zeta+zeta_offset
? ubar+ubar_offset
? vbar+vbaroffset

zeta.size,
ubar_size,
vbar_size);

Again, if a worker is not the first or last worker, both if conditions hold. Therefore, each of

these workers will require two receives. The procedure for propagation of data between

workers is demonstrated in Figure 4.

21

4.4 Problems Encountered

As already seen, many problems were encountered during the process of attempting to

parallelize the SWEM code. There were many obstacles standing in our way at the very

start. Some of the problems we encountered were simple problems that were rather easy

to solve, while others ended up costing us valuable time and effort.

One major problem was with the arrays themselves. In the initial stages of our re-

search, our knowledge of both ocean dynamics and the mathematical basis behind the

model was rather limited. Many of the array names gave little indication as to their pur-

pose. Names such as omn_u, mDon_r, and on_u told us very little about their

meaning. Also, many arrays had names that differed in only one ortwo characters. Arrays

such as nDom_r and mDon_r, ubar and vbar, and dndx and dmde

could cause the program to produce incorrect data if they happened to accidentally be

exchanged for one another. These types of errors are extremely difficult to find, and can

cause many long delays in the coding process.

Another problem we had with the arrays was the way they were defined. Each array

was given a starting index and an ending index for each dimension. Unfortunately, these

starting and ending indices were usually different from one array to another. These differ-

ences caused us to lose hours of valuable time that could have been spent programming

rather than debugging. If an array size or an array's starting index was mistakingly given

the wrong value, we could end up placing values past the end of an array and writing over

half of our data in memory in the process. Once this happens, a close inspection of all of

the code is usually required to find out where it went wrong.

Yet another problem we had to deal with was how to handle masking arrays used

in the original SWEM code to mask out any land areas that were in the particular grid

being modeled.3 The SWEM masking arrays consist of single-dimension arrays of indices

which define the locations of land areas within the study grid. These arrays are used

within SWEM to reference the land grid points while treating the various two-dimensional

data arrays as single-dimension arrays beginning with index 1. This makes the masking

3This was the only part of the original code that had to be adjusted.

22

arrays consist of index values which require careful interpretation to determine which

indices refer to the sub-grid processed by a particular worker.

We wrote a subroutine that modifies any masking arrays being used, and limits the

masks to only those which refer to data contained within a particular worker. It also sub-

tracts an offset from its indices to make them correct for the worker's sub-arrays. The

amount of offset within the worker is dependent upon whether this worker is the first

worker, the widths of the arrays, and whether the arrays being adjusted start at row 0,1,

or 2 (this problem was mentioned earlier).

4.5 Debugging Methods Used

With all of the problems we encountered, there was a need for an easy way to know

whether or not the data being calculated by the parallel model was correct. One way to

do this was to compare the final output files of the parallel version of SWEM with those

of the sequential version. However, if there were any differences in output, there was

no way to know where the error occured. Therefore, there was a need to be able to

locate errors at points within the code. To accomplish this task, we decided to run the

sequential version of SWEM and the parallel version of SWEM concurrently within the

same program. The part of the program being parallelized was left in the main program

and was executed in step with the worker processes that were doing the parallel part. At

strategic points within the master process and the worker processes, we would suspend

calculations and send data from the parallel part to the sequential part of the program for

comparison. Using generic send and receive routines, we would send over one array at

a time and use a generic compare routine to compare it with its sequential counterpart.

If they were the same, we would try another array until we found the one causing the

error. Of course, before we could use these routines, they had to be properly debugged

themselves. The problems of using the correct array sizes, and using the proper starting

index caused us a little grief in the initial stages of debugging the code. However, once

the debugging subroutines were debugged themselves, they saved us days (if not weeks)

of debugging time.

23

Time Speedup Efficiency

Sequential 3:54:41 1.00

Pfa (2 workers) 2:06:08 1.86 .93

Pfa (3 workers) 1:34:36 2.48 .83

Glenda (2 workers) 2:16:25 1.72 .86

Glenda (3 workers) 1:48:27 2.16 .72

Table 2: Timings for a 240 day simulation.

5 Testing the Parallel Version of SWEM

For our test, we used a three CPU SGI 340-GTXB, operated by Mississippi State Univer-

sity Center for Air Sea Technology (CAST). We were given sole use of the computer for

testing purposes. As part of the test, we ran the original sequential version of SWEM to

serve as a basis for comparison. Using this time, we will be able to determine our parallel

version's speedup. For a more challenging test, we also compiled the original SWEM

code using the SGI MIPS FORTRAN 77 "-pfa" option [8]. This option runs the pfa

(POWER Fortran Accelerator™) preprocessor to automatically discover parallelism in

the source code. It also enables the multiprocessing directives for the SGI 340-GTXB.

This timing gives us a "yardstick" upon which we can measure our parallel version.

The timings were made for 240 day simulations.

Our results are shown in Table 2. These efficiency values are not particularly high.

The primary reason for this is that the array sizes are relatively small. In the case of

the SGI compiler it requires moderately long loops to achieve high efficiency [8]. In the

Glenda version the small width of the rows means that there is a relatively small amount

of time spent computing between communication steps. With larger data sets, we predict

that both the SGI Fortran compiler and the Glenda code would achieve higher efficiencies.

However, it is unlikely that a message-passing solution will out-perform the tightly-coupled

code produced by the compiler.

In a similar test, we compared the Glenda version with a version of SWEM using PVM

24

to handle the communications. As expected, the PVM version was slightly more efficient

than the Glenda version - but only by about two percent. This test was based on a 48

day simulation with only two workers. Due to hardware limitations and time constraints at

the time of testing, we were not able to test a 240 day simulation or test with more than

two workers. However, since we have had similar comparative results using Glenda and

PVM, we feel that this test was an accurate comparison.

6 Conclusion and Future Research

We have shown that Glenda can be used to efficiently parallelize an ocean modeling

program. While the efficiency is lower than the SGI compiler's, the Glenda version of

SWEM is portable to a variety of environments. We have illustrated how we divided the

work among the workers and resolved the resulting communication problem.

The decision to divide the arrays by rows resulted in an efficient solution in our test

environment. Our tests were done with a moderately small data set. We predict that

with larger-sized data sets, this version of SWEM will be efficient up to perhaps eight

workers. It is clear that division by rows limits the scalability and at some point it would

be necessary to divide the data by rows and columns.

Our research has shown that Glenda shows promise for working with ocean models.

We plan to extend this effort by testing the parallel SWEM in new environments. In par-

ticular we are interested in determining how efficiently we can utilize massively-parallel

machines.

Acknowledgments
This author is greatly indebted to many people without whom this research effort

would not have been possible. A special thanks to my committee chairman Dr. Ben-

jamin R. Seyfarth (The University of Southern Mississippi) and its members Dr. Germana

Peggion (COAM) and Dr. Mitch Krell (The University of Southern Mississippi) for their

continuing guidance and support of this research.

This work was supported by the Office of Naval Research (under Grant # N00014-92-

25

J-4112), the National Aeronautics and Space Administration (NASA), and by the Center

for Ocean & Atmospheric Modeling (COAM), Stennis Space Center, Mississippi. The

author would also like to thank the Department of Computer Science and Statistics and

COAM for not only being given the opportunity to pursue this research, but also for being

allowed to participate in this Master's program and broaden his horizons.

References

[1] Robert D. Bjornson, "Linda On Distributed Memory Systems", UMI Disserta-

tion Services, Yale University, May. 1993.

[2] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek and Vaidy Sunderam, "A

User's Guide to PVM", Oak Ridge National Laboratory,OakRidge,TU,

Jul. 1991.

[3] Nicholas J. Carriero, "Implementation of Tuple Space Machines", UMI Disser-

tation Services, Yale University, Dec. 1987.

[4] Nicholas Carriero and David Gelernter, "How to Write Parallel Programs", The

MIT Press, Cambridge, Massachusetts, 1991.

[5] Nikos Drakos, "Ocean Models", Computational Science Education

Project, U.S. Department of Energy, Aug. 1994.

[6] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Mancheck and

Vaidy Sunderam, "PVM : Parallel Virtual Machine - A Users' Guide and Tutorial for

Networked Parallel Computing", The MIT Press, Cambridge, Massachusetts,

1994.

[7] Katherine S. Hedstrom, Institute of Marine and Coastal Sciences, Rutgers Uni-

versity, "User's Manual for a Semi-Spectral Primative Equation Ocean Circulation

Model", Mar. 1994.

26

[8] Chris Hogue, "POWER Fortran Accelerator™ User's Guide", Silicon Graph-

ics, Inc., Mountain View, CA, Jan. 1992.

[9] James J. O'Brien, "Advanced Physical Oceanographic Numerical Modeling", NATO

ASI Series, Vol. 186, pp.608.

[10] Germana Peggion, "Coupling a Basin-wide, Coarse Resolution North Atlantic and a

Regional, Fine-resolution Gulf of Mexico Model", The University of Southern Missis-

sippi Center for Ocean & Atmospheric Modeling, COAM Report (in preparation).

[11] B. R. Seyfarth, J. L. Bickham and M. R. Fernandez, "Glenda:An Environment for

Easy Parallel Programming", Scalable High Performance Computing

Conference, Knoxville, TN, May. 1994.

[12] B. R. Seyfarth, J. L. Bickham and Germana Peggion, "Glenda Software Design",

The University of Southern Mississippi Center for Ocean & Atmospheric Modeling,

COAM Technical Report, TR-3/95. Feb. 1995.

27

A The SWEM Experimental Region

Our experiments analyzed the response of the North Atlantic Ocean to the climatological

monthly winds. The domain is configured in the reduced gravity formulation with an ini-

tial upper layer thickness of 450 meters. The numerical domain has closed boundaries.

The boundary fitted coordinates are chosen to give a high spatial grid resolution (about

50 kilometers) in the western subtropical basin in order to analyze the circulation of the

Caribbean Sea and its influence on the dynamics inside the Gulf of Mexico.

Figure 5 illustrates the annual mean upper layer thickness anomaly (in meters) from

the numerical experiments. The solution indicates a double gyre system. The cyclonic

(counterclockwise) subarctic gyre is unrealistic due to the close boundary configuration,

but the western intensification of the anticyclonic (clockwise) gyre (the Gulf Stream) is

well reproduced. The current separates from the coast in the proximity of Cape Hatteras

and is dominated by large fluctuations with meanders and ring formation, as supported

by observations and measurements.

The geometry of the western subtropical basin has a strong effect on the dynamics

of the Caribbean Sea and Gulf of Mexico. Part of the return flow of the wind driven gyre

enters the Caribbean Sea from several openings between the Antilles Islands. These

branches organize into a narrow current (the Yucatan Current) which flows along the

Mexican Coast, enters the Gulf of Mexico through the Yucatan Strait, and exits from the

Florida Strait. There it rejoins the main return flow of the anticyclonic gyre [10].

28

CONTOUR FROM -362.5 TO 237.5 BY 25

Figure 5: The annual mean sea surface displacement from the SWEM simu-
lations.

29

B Parallel Version of SWEM

The parallel version of SWEM containing the SWEM FORTRAN code, as well as the files

containing the Glenda subroutines {master.subs, eg and worker.subs.cg), can

be downloaded via anonymous ftp at

seabass.st.usm.edu

The two files containing the Glenda subroutines were added to the sequential SWEM

code to facilitate the parallelism.

• The file master_subs. eg contains subroutines needed by the master program

to communicate with the worker programs.

• The file worhersubs. eg contains subroutines needed by the worker programs

to communicate with the master program.

All of the subroutines were written in C and used Glenda to handle the interprocess com-

munication. Within the SWEM code, these subroutines are used as FORTRAN subrou-

tines.

30

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of Information Is estimated to average 1 hour per response, Including the time (or reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of
this collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. Agency Use Only (Leave blank). 2. Report Date.
May 1995

3. Report Type and Dates Covered.
Technical Report

4. Title and Subtitle.

PARALLEL OCEAN MODELING USING GLENDA

6. Authors).

Jerry L. Bickham, II

5. Funding Numbers.

Program Element No.

Project No.

Task No.

Accession No

7. Performing Organization Name(s) and Address(es).
Center for Ocean & Atmospheric Modeling
The University of Southern Mississippi
Building 1103, Room 249
Stennis Space Center, MS 39529-5005

0. Performing Organization
Report Number.

TR-4/95

9. Sponsoring/Monitoring Agency Name(s) and Address(es).
Office of Naval Research
Code 1513: RKL
Ballston Centre Tower One
800 North Quincy Street
Arlington, VA 22217-5660

10. Sponsoring/Monitoring Agency
Report Number.

11. Supplementary Notes.

ONR Research Grant No. N00014-92-J-4112

12a. Distribution/Availability Statement.

Approved for public release; distribution is unlimited.

12b. Distribution Code.

13. Abstract (Maximum 200 words). in this document we describe how, with the use of Glenda, we
were able to parallelize the ocean modeling program SWEM. After a description of
Glenda and an introduction to the ocean model, we discuss how we parallelized the
model. We first had to determine the array dependencies in the program in order to
better understand the way we were going to handle data propagation. Once we had a
grasp of how the data was to be propagated, there was a need to develop overlap
definitions to help improve the readability of the code. But, we still encountered
problems that had to be solved. Therefore, we had to use a wide assortment of de-
bugging techniques to overcome these problems. With our problems finally solved
and the program now complete, we tested our new version of SWEM and gathered
results.

14. Subject Terms.

(U) PARALLEL PROCESSING, (U) GLENDA, (U) ARRAY DEPENDENCIES,
(U) REDUCED GRAVITY OCEAN CIRCULATION MODEL

15. Number of Pages.
40

16. Price Code.

17. Security Classification
of Report.
Unclassified

18. Security Classification
of This Page.

Unclassified

19. Security Classification
of Abstract.

Unclassified

20. Limitation of Abstract.

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-1B
298-103

